360 research outputs found

    Contralateral fatigue during severe-intensity single-leg exercise: influence of acute acetaminophen ingestion

    Get PDF
    Exhaustive single-leg exercise has been suggested to reduce time to task failure (Tlim) during subsequent exercise in the contralateral leg by exacerbating central fatigue development. We investigated the influence of acetaminophen (ACT), an analgesic that may blunt central fatigue development, on Tlim during single-leg exercise completed with and without prior fatiguing exercise of the contralateral leg. Fourteen recreationally active men performed single-leg severe-intensity knee-extensor exercise to Tlim on the left (Leg1) and right (Leg2) legs without prior contralateral fatigue and on Leg2 immediately following Leg1 (Leg2-CONTRA). The tests were completed following ingestion of 1-g ACT or maltodextrin [placebo (PL)] capsules. Intramuscular phosphorus-containing metabolites and substrates and muscle activation were assessed using 31P-MRS and electromyography, respectively. Tlim was not different between Leg1ACT and Leg1PL conditions (402 ± 101 vs. 390 ± 106 s, P = 0.11). There was also no difference in Tlim between Leg2ACT-CONTRA and Leg2PL-CONTRA (324 ± 85 vs. 311 ± 92 s, P = 0.10), but Tlim was shorter in Leg2ACT-CONTRA and Leg2PL-CONTRA than in Leg2CON (385 ± 104 s, both P 0.05). These findings suggest that levels of metabolic perturbation and muscle activation at Tlim are not different during single-leg severe-intensity knee-extensor exercise completed with or without prior fatiguing exercise of the contralateral leg. Despite contralateral fatigue, ACT ingestion did not alter neuromuscular responses, muscle metabolites, or exercise performance.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This research was not sponsored by any funding body external to the University of Exeter. J. Fulford’s salary was supported via National Institute for Health Research Grant CRF/2016/10027 to the University of Exeter.Accepted version (12 month embargo

    Ruminal metabolism of ammonia N and rapeseed meal soluble N fraction

    Get PDF
    The present study was conducted to investigate ruminal N metabolism in dairy cows using N-15 labeled N sources [ammonia N (AN), soluble non-ammonia N (SNAN) from rapeseed meal, and insoluble nonammonia N (NAN) from rapeseed meal]. To describe the observed pattern of N-15 transactions in the rumen, dynamic compartmental models were developed. The experiment consisted of 3 experimental treatments allocated to 4 cows according to a changeover design. The results from 2 treatments (AN and rapeseed meal SNAN) are reported in this paper. Ammonia N and rapeseed SNAN, both labeled with N-15, were administered intraruminally. Rumen evacuations in combination with grab samples from the rumen contents were used to determine ruminal N pool sizes. The N-15-atom% excess was determined in N fractions of rumen digesta samples that were distributed between 0 and 82 h after dosing. For the AN treatment, a 2-compartment model was developed to describe the observed pattern in N-15-atom% excess pool sizes of AN and bacterial NJ and to estimate kinetic parameters of ruminal N-15 transactions. For the SNAN treatment, an additional compartment of SNAN was included in the model. Model simulations were used to estimate N fluxes in the rumen. Both models described the observed pattern of N-15-atom% excess pool sizes accurately, based on small residuals between observed and predicted values. Immediate increases in N-15-atom% excess of bacterial N with AN treatment suggested that microbes absorbed AN from extracellular pools rapidly to maintain sufficient intracellular concentrations. Proportionally 0.69 of the AN dose was recovered as NAN flow from the rumen. A rapid disappearance of labeled SNAN from rumen fluid and appearance in bacterial N pool indicated that, proportionally, 0.56 of SNAN was immediately either adsorbed to bacterial cell surfaces or taken up to intracellular pools. Immediate uptake of labeled SNAN was greater than that of AN (proportionally 0.56 vs. 0.16 of the dose). Degradation rate of SNAN to AN was relatively slow (0.46/h), but only 0.08 of the SNAN dose was estimated to escape ruminal degradation because of rapid uptake by the bacteria. Overall, losses of the N-15 dose as AN absorption and outflow from the rumen were higher (P <0.01) for the AN than the SNAN treatment (0.31 and 0.11 of the dose, respectively). Consequently, recovery as NAN flow was greater for SNAN than for AN treatment (0.89 vs. 0.69 of the dose). Estimated rate of bacterial N recycling to AN was on average 0.006/h, which suggests that N losses due to intraruminal recycling are small in dairy cows fed at high intake levels. We conclude that SNAN isolated from rapeseed meal had better ruminal N utilization efficiency than AN, as indicated by smaller rurninal N losses as AN (0.11 vs. 0.31 of the dose) and greater bacterial N flow (0.81 vs. 0.69 of the dose). Furthermore, the current findings indicate that rapid adsorption of soluble proteins to bacterial cells plays an important role in ruminal N metabolism.Peer reviewe

    Ruminal metabolism of ammonia N and rapeseed meal soluble N fraction

    Get PDF
    The present study was conducted to investigate ruminal N metabolism in dairy cows using N-15 labeled N sources [ammonia N (AN), soluble non-ammonia N (SNAN) from rapeseed meal, and insoluble nonammonia N (NAN) from rapeseed meal]. To describe the observed pattern of N-15 transactions in the rumen, dynamic compartmental models were developed. The experiment consisted of 3 experimental treatments allocated to 4 cows according to a changeover design. The results from 2 treatments (AN and rapeseed meal SNAN) are reported in this paper. Ammonia N and rapeseed SNAN, both labeled with N-15, were administered intraruminally. Rumen evacuations in combination with grab samples from the rumen contents were used to determine ruminal N pool sizes. The N-15-atom% excess was determined in N fractions of rumen digesta samples that were distributed between 0 and 82 h after dosing. For the AN treatment, a 2-compartment model was developed to describe the observed pattern in N-15-atom% excess pool sizes of AN and bacterial NJ and to estimate kinetic parameters of ruminal N-15 transactions. For the SNAN treatment, an additional compartment of SNAN was included in the model. Model simulations were used to estimate N fluxes in the rumen. Both models described the observed pattern of N-15-atom% excess pool sizes accurately, based on small residuals between observed and predicted values. Immediate increases in N-15-atom% excess of bacterial N with AN treatment suggested that microbes absorbed AN from extracellular pools rapidly to maintain sufficient intracellular concentrations. Proportionally 0.69 of the AN dose was recovered as NAN flow from the rumen. A rapid disappearance of labeled SNAN from rumen fluid and appearance in bacterial N pool indicated that, proportionally, 0.56 of SNAN was immediately either adsorbed to bacterial cell surfaces or taken up to intracellular pools. Immediate uptake of labeled SNAN was greater than that of AN (proportionally 0.56 vs. 0.16 of the dose). Degradation rate of SNAN to AN was relatively slow (0.46/h), but only 0.08 of the SNAN dose was estimated to escape ruminal degradation because of rapid uptake by the bacteria. Overall, losses of the N-15 dose as AN absorption and outflow from the rumen were higher (P <0.01) for the AN than the SNAN treatment (0.31 and 0.11 of the dose, respectively). Consequently, recovery as NAN flow was greater for SNAN than for AN treatment (0.89 vs. 0.69 of the dose). Estimated rate of bacterial N recycling to AN was on average 0.006/h, which suggests that N losses due to intraruminal recycling are small in dairy cows fed at high intake levels. We conclude that SNAN isolated from rapeseed meal had better ruminal N utilization efficiency than AN, as indicated by smaller rurninal N losses as AN (0.11 vs. 0.31 of the dose) and greater bacterial N flow (0.81 vs. 0.69 of the dose). Furthermore, the current findings indicate that rapid adsorption of soluble proteins to bacterial cells plays an important role in ruminal N metabolism.Peer reviewe

    EcoMem: An R package for quantifying ecological memory

    Get PDF
    Ecological processes may exhibit memory to past disturbances affecting the resilience of ecosystems to future disturbance. Understanding the role of ecological memory in shaping ecosystem responses to disturbance under global change is a critical step toward developing effective adaptive management strategies to maintain ecosystem function and biodiversity. We developed EcoMem, an R package for quantifying ecological memory functions using common environmental time series data (continuous, count, proportional) applying a Bayesian hierarchical framework. The package estimates memory functions for continuous and binary (e.g., disturbance chronology) variables making no a priori assumption on the form of the functions. EcoMem allows users to quantify ecological memory for a wide range of ecosystem processes and responses. The utility of the package to advance understanding of the memory of ecosystems to environmental drivers is demonstrated using a simulated dataset and a case study assessing the memory of boreal tree growth to insect defoliation.Peer reviewe

    Responses to Grass or Red Clover Silages Cut at Two Stages of Growth in Dairy Cows

    Get PDF
    Red clover has an important role in organic farming, and also potential to reduce dependence on N fertilisers in conventional farming. This experiment compared dairy cow responses to grass and red clover silages cut at two stages of growth

    NDF Digestion in Dairy Cows Fed Grass or Red Clover Silages Cut at Two Stages of Growth

    Get PDF
    Increasing demand for organic dairy products has encouraged research on red clover, as it is an important plant species in organic farming systems. The objective of this experiment was to investigate the effects of plant species and growth stage on NDF digestion in dairy cows

    A dataset of neonatal EEG recordings with seizure annotations

    Get PDF
    Neonatal seizures are a common emergency in the neonatal intensive care unit (NICU). There are many questions yet to be answered regarding the temporal/spatial characteristics of seizures from different pathologies, response to medication, effects on neurodevelopment and optimal detection. The dataset presented in this descriptor contains EEG recordings from human neonates, the visual interpretation of the EEG by the human experts, supporting clinical data and codes to assist access. Multi-channel EEG was recorded from 79 term neonates admitted to the NICU at the Helsinki University Hospital. The median recording duration was 74 min (IQR: 64 to 96 min). The presence of seizures in the EEGs was annotated independently by three experts. An average of 460 seizures were annotated per expert in the dataset; 39 neonates had seizures and 22 were seizure free, by consensus. The dataset can be used as a reference set of neonatal seizures, in studies of inter-observer agreement and for the development of automated methods of seizure detection and other EEG analyses.Peer reviewe

    Exploring the synergy between promoting active participation in work and in society and social, health and long-term care strategies

    Full text link
    The purpose of this study is to provide information that can help the Commission and EU Member States engage in policy discussion on how social, health and long-term care systems can help enhance participation in work and family, social and community activities and how, in turn, participation in paid employment, family, social and community activities can contribute to healthy and autonomous living at present and in the future. Part I presents a review of the literature on the synergy between health and activity/work. Health affects work and social participation but on the other side work and activity affect health. We focus on people aged 55 and over as this interrelation (double causality) seems to be significant for important life events (retirement decision, social participation, etc.) of this age group. Part II presents a quantitative analysis and tries to identify national specificities. It presents the lessons which we can draw from European surveys. It presents a quantitative analysis based on the LFS, the EU-SILC, the ECHP UDB and SHARE surveys. The fourth step summarises national policies and gives a comparative analysis, while the fifth step presents the best practices. Finally, the last part summarises the main conclusions and the policy implications
    corecore